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Brain amyloid deposition is thought to be a seminal event in Alzheimer’s disease. To identify genes influencing Alzheimer’s disease

pathogenesis, we performed a genome-wide association study of longitudinal change in brain amyloid burden measured by
18F-florbetapir PET. A novel association with higher rates of amyloid accumulation independent from APOE (apolipoprotein E)

"4 status was identified in IL1RAP (interleukin-1 receptor accessory protein; rs12053868-G; P = 1.38 � 10�9) and was validated by

deep sequencing. IL1RAP rs12053868-G carriers were more likely to progress from mild cognitive impairment to Alzheimer’s

disease and exhibited greater longitudinal temporal cortex atrophy on MRI. In independent cohorts rs12053868-G was associated

with accelerated cognitive decline and lower cortical 11C-PBR28 PET signal, a marker of microglial activation. These results

suggest a crucial role of activated microglia in limiting amyloid accumulation and nominate the IL-1/IL1RAP pathway as a

potential target for modulating this process.
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Introduction
Deposition of amyloid-b in the brain is thought to be a

necessary early step in the development of Alzheimer’s dis-

ease, a progressive and highly prevalent neurodegenerative

disorder with substantial societal burdens (Karran et al.,

2011; Jack et al., 2013a). Existing prospective studies sug-

gest that brain amyloid accumulation occurs over decades,

preceding the onset of clinical symptoms and subsequently

contributing to clinical progression (Villemagne et al.,

2013; Doraiswamy et al., 2014; Huijbers et al., 2015).

However, the mechanisms underlying amyloid accumula-

tion and clearance in Alzheimer’s disease are not fully

understood.

Pathogenic mutations causing rare, early-onset forms of

Alzheimer’s disease have been described in three genes

involved in amyloidogenesis, APP (amyloid precursor pro-

tein), PSEN1 (presenilin 1), and PSEN2 (presenilin 2)

(Bettens et al., 2013). For late-onset Alzheimer’s disease,

the strongest known genetic risk factor is the APOE "4

allele (Corder et al., 1993). Several mechanisms have

been proposed relating APOE "4 to enhanced aggregation

and reduced clearance of brain amyloid (Kim et al., 2009).

However, APOE "4 is neither necessary nor sufficient for

development of amyloid pathology or incident Alzheimer’s

disease, suggesting that other contributing factors remain to

be discovered.

With the development of radiotracers allowing for non-

invasive in vivo detection of amyloid plaque burden in

large samples (Clark et al., 2012), amyloid PET has

become an established endophenotype used in cross-

sectional studies to relate genetic variants to Alzheimer’s

disease pathology (Swaminathan et al., 2012; Rhinn

et al., 2013; Shulman et al., 2013; Lim et al., 2014;

Ramanan et al., 2014b). We hypothesized that genetic fac-

tors would also modulate the rate of amyloid accumulation

over time. We therefore performed a genome-wide associ-

ation study (GWAS) of longitudinal change in brain amyl-

oid burden measured by 18F-florbetapir PET to identify

novel genetic influences on the pathogenesis and trajectory

of Alzheimer’s disease.

Materials and methods

Subjects and phenotypes

The Alzheimer’s Disease Neuroimaging Initiative (ADNI,
Weiner et al., 2010), Indiana Memory and Aging Study
(IMAS; Ramanan et al., 2014a), Rush Memory and Aging
Project (MAP, Bennett et al., 2012b), and Religious Orders
Study (ROS; Bennett et al., 2012a) are longitudinal studies
of older adults representing clinical stages along the continuum
from normal ageing to Alzheimer’s disease. All participants
provided written informed consent, and study protocols were
approved by each site’s institutional review board.

18F-Florbetapir PET imaging was performed at baseline and
2-year follow-up for participants enrolled in the ADNI GO
and 2 phases. Image acquisition and preprocessing were per-
formed as described previously (Jagust et al., 2010). Tracer
uptake was normalized to average uptake values from an
atlas-based composite reference region expected not to exhibit
amyloid pathology (composed of the cerebral white matter
degraded to 0.7, brainstem, and whole cerebellum). This nor-
malization yielded standardized uptake value ratio (SUVR)
images (Schmidt et al., 2014). As described previously, the
mean SUVR for a customized composite region was obtained
to represent a global cortical measure of amyloid burden at
each time point (Risacher et al., 2015). The annualized per
cent change in global cortical SUVR at 2-year follow-up com-
pared to baseline was used as the main quantitative phenotype
for genetic analysis. Extreme outliers (annualized per cent
change4 three standard deviations from the sample mean)
were excluded to limit the potential for spurious associations.
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For post hoc analyses, baseline amyloid status (positive versus
negative) was determined for each participant as described pre-
viously (Risacher et al., 2015).

11C-PBR28 PET imaging was performed for a subset of IMAS
participants as described previously (Yoder et al., 2013). The
sample analysed included cognitively normal older adults
(n = 7), older adults with cognitive complaints in the absence
of significant cognitive deficits (n = 5), participants with mild
cognitive impairment (MCI, n = 7), and clinical Alzheimer’s dis-
ease participants (n = 6). SUV images were created by normal-
izing each voxel by the injected dose of 11C-PBR28 per total
body weight. Mean SUV data were extracted for the frontal,
parietal, temporal, limbic, and occipital lobes. The average SUV
for these five regions was calculated to represent a global cor-
tical index of activated microglia for use as a quantitative
phenotype. TSPO (translocator protein, 18 kDa) rs6971 geno-
type was used to delineate participants with high, mixed, and
low affinity states of the TSPO binding site, as 11C-PBR28 is
highly sensitive to these states (Kreisl et al., 2013). For genetic
analyses, participants with low affinity TSPO binding sites
(rs6971-TT) were excluded and rs6971 genotype (CC versus
TC) was included as a covariate (Yoder et al., 2013).

For ADNI participants, structural MRI scans from baseline
and 2-year follow-up visits were downloaded (www.adni.loni.
usc.edu) and processed as described previously (Risacher et al.,
2010) using FreeSurfer, version 5.1. For each scan, mean
thickness values from the left and right temporal cortex re-
gions were averaged to create a measure of bilateral temporal
cortex thickness. The annualized per cent change in bilateral
temporal cortex thickness at 2-year follow-up compared to
baseline was calculated for use in genetic analyses.

Verbal episodic memory performance was assessed at base-
line and 2-year follow-up for participants from ADNI, MAP
and ROS using delayed recall of logical memory prose pas-
sages from the Wechsler Memory Scale-Revised. For genetic
analyses, the 2-year difference in delayed recall score was
used as the phenotype and baseline age, gender and education
were included as covariates.

Genotyping and imputation

GWAS data for ADNI participants were obtained and pro-
cessed as described previously (Ramanan et al., 2014b).
Briefly, genotyping was performed per manufacturer’s protocol
using blood genomic DNA samples and Illumina GWAS arrays
(610-Quad, OmniExpress, or HumanOmni2.5-4v1). The single
nucleotide polymorphisms (SNPs) characterizing APOE "2/"3/
"4 status (rs429358 and rs7412) were genotyped separately
and merged with the array data sets as described previously
(Saykin et al., 2010, 2015). Genotype data underwent strin-
gent quality control including identity checks, sample exclusion
for call rate 595%, and SNP exclusion for call rate 595%,
Hardy-Weinberg P5 1 � 10�6, or minor allele frequency
(MAF) 51%.

MaCH (Li et al., 2010), Minimac (Howie et al., 2012), and
haplotype patterns from the 1000 Genomes Project reference
panel were used to impute SNP genotypes not directly assayed
by the GWAS arrays. Imputation was performed as described
previously (Nho et al., 2013; Ramanan et al., 2014b).
Following additional quality control (SNP call rate595%,
Hardy-Weinberg P5 1 � 10�6) and frequency filtering
(MAF55%), 6 112 217 genotyped and imputed SNPs were

available for analysis. Six participant pairs exhibited significant
relatedness (PI_HAT40.5) and therefore one individual from
each pair was randomly selected for exclusion. For additional
studies in IMAS, MAP and ROS, identical procedures were
used to impute the specific SNPs required for analysis
(Chibnik et al., 2011; Ramanan et al., 2014a).

Whole genome sequencing was obtained from blood gen-
omic DNA samples for a subset of the ADNI sample.
Sequencing was performed using the Illumina HiSeq2000
system through paired-end read chemistry and read lengths
of 100 base pairs. The resulting Illumina GSEQ files were con-
verted into FASTQ files for introductory evaluation using
FastQC (Andrews, 2010). Initial alignment to the reference
human genome (NCBI build 37.72) for bases with Phred qual-
ity415 was completed using the Burrows-Wheeler Alignment
tool (Li and Durbin, 2009). Suspicious reads were locally re-
aligned and the Illumina base calling quality scores were reca-
librated to account for effects of sequencing technology and
machine cycle. These realigned reads were written to a BAM
file to be used for multi-sample variant calling using the GATK
HaplotypeCaller (DePristo et al., 2011). ANNOVAR (Wang
et al., 2010b) was used to annotate variants passing recom-
mended quality criteria (Van der Auwera et al., 2013).
Participants with poor quality variant calls (concordance
rate5 99% for SNPs genotyped through both sequencing
and the Illumina HumanOmni2.5-4v1 array) were excluded
from further analysis.

To limit potential effects of population stratification, all gen-
etic analyses were restricted to non-Hispanic white participants
as determined by multidimensional clustering using PLINK. To
verify appropriate control for population structure,
EIGENSTRAT was used to generate principal component
eigenvectors for use as covariates in post hoc analyses.

Statistical analysis

GWAS was performed using linear regression under an addi-
tive genetic model in PLINK. Baseline age and gender were
included as covariates in the GWAS. A conservative signifi-
cance threshold (P55 � 10�8) was used based on a
Bonferroni correction of one million independent tests (Pe’er
et al., 2008). Manhattan and Q-Q plots were generated with
Haploview and regional association plots were generated with
LocusZoom. The genome partitioning algorithm GCTA (Yang
et al., 2011) was used to estimate the proportion of phenotypic
variance explained by all SNPs in the GWAS. Power calcula-
tions and curves were obtained using GWAPower (Feng et al.,
2011).

Significant associations were further investigated using
sequence data from a subset of the GWAS sample.
Common variants in IL1RAP, defined as having
MAF51 / ˇ(2n) = 0.034 (Ionita-Laza et al., 2013), were ana-
lysed using linear regression under an additive genetic model in
PLINK. SKAT (Ionita-Laza et al., 2013) was used to perform
association testing of low-frequency and rare IL1RAP variants
(MAF50.034). Pairwise linkage disequilibrium calculations
were obtained for selected SNP pairs using PLINK.

Complementary approaches were used to extend the GWAS
findings. GATES (KGG software version 2.5) (Li et al., 2011)
was used to calculate a summary P-value for each gene
(including a default � 5 kb window to account for putative
regulatory regions) based on its size, linkage disequilibrium
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structure and constituent GWAS SNP associations. GSA-SNP

(Nam et al., 2010; Ramanan et al., 2012a) was used to iden-
tify biological pathways exhibiting enrichment of association
in the GWAS. Pathway definitions from three resources
(Biocarta, KEGG and Reactome) were downloaded from the

Molecular Signatures Database, version 4.0 and analysis was
restricted to pathways containing 5–100 genes to limit the
potential for size-influenced spurious associations (Ramanan
et al., 2012b). Pathways with false discovery rate (FDR)-cor-
rected P5 0.05 were considered as significant.

Statistical Parametric Mapping 8 (Wellcome Trust Centre for
Neuroimaging) was used to perform voxel-wise analysis of the
effect of IL1RAP rs12053868 on longitudinal change in
18F-florbetapir PET amyloid burden. A two-way ANCOVA

was performed using rs12053868 genotype and scan visit
(baseline versus 2-year follow-up) as the independent variables
and age, gender, baseline diagnosis, APOE "4 status (positive
versus negative), and time between PET scans as covariates. To

specify an additive model, we a priori (based on the GWAS
results) coded the analysis vector as [positive change in
AA]5 [positive change in GA]5 [positive change in GG], cor-
responding to a vector of [�1, 0, �1, 1, �1, 2]. A grey matter

mask was used and results were displayed at a voxel-wise
threshold of P50.001 (uncorrected) with minimum cluster
size (k) = 175 voxels. These voxel-wise parameters were se-
lected to approximately correspond to a cluster-wise threshold

of P50.05 (FDR-corrected). Only the GG4GA4AA results
are shown, as no significant clusters were observed from the
reciprocal model of AA4GA4GG.

Additional analyses were performed using IBM SPSS Statistics,

Version 22.0. Following the GWAS, post hoc models including
additional covariates were used to assess the robustness of the
association of IL1RAP rs12053868 with higher rates of amyl-
oid accumulation. Baseline 18F-florbetapir PET SUVR and the

square of this value were both included among the additional
covariates in these post hoc analyses to account for the sig-
moidal relationship of cortical amyloid PET burden to time
(Jack et al., 2013b). Consistent with previous data (Jack

et al., 2013b), the rate of amyloid accumulation as a function
of baseline amyloid burden displayed an inverted U relationship
(Supplementary Fig. 1). A one-way ANCOVA was used to
assess the effect of rs12053868 genotype (AA versus GA/GG)

on annualized per cent change in bilateral temporal cortex
thickness, including baseline age, gender, total intracranial
volume, and MRI scanner type (1.5 T versus 3.0 T field
strength) as covariates. A subsequent two-way ANCOVA was
performed to further explore the potential interaction of

rs12053868 genotype with baseline diagnosis (cognitively
normal versus MCI versus Alzheimer’s disease). Logistic regres-
sion was used to test the association of rs12053868 genotype
(AA versus GA/GG) with progression from MCI to Alzheimer’s

disease, including baseline age and gender as covariates. The
associations of rs12053868 with 11C-PBR28 PET SUV and lon-
gitudinal change in memory performance were tested using
linear regression under an additive genetic model. As described

above, baseline age, gender, and TSPO rs6971 genotype were
included as covariates in the 11C-PBR28 PET analysis. Baseline
age, gender, and education were included as covariates in the
memory analysis. METAL (Willer et al., 2010) was used to

perform inverse-variance weighted meta-analysis of the within-
cohort memory studies.

Results

Longitudinal change in brain amyloid
PET burden in ADNI participants

Primary phenotype (annualized per cent change in global

cortical amyloid burden) and GWAS data passing strin-

gent quality control were available for 495 ADNI par-

ticipants (Table 1). Baseline age and gender were

included as covariates in all analyses. The annualized

per cent change in cortical amyloid burden was ap-

proximately normally distributed across the full sample

(Supplementary Fig. 2). Mean annualized rates of

amyloid accumulation were higher in Alzheimer’s disease

(1.36%; n = 41) than in MCI (0.79%; P = 0.02; n = 294)

or cognitively normal (0.66%; P = 5.47 � 10�3; n = 160)

participants.

APOE "4 is associated with higher
rates of amyloid accumulation

Because of its well-known association with Alzheimer’s dis-

ease, prior to GWAS we investigated the effect of the

APOE locus on longitudinal change in amyloid burden.

Genotypes for APOE rs429358 and rs7412 were obtained

for all but one participant. APOE "4 carriers showed larger

increases in amyloid burden over time compared to non-

carriers (P = 9.00 � 10�6; Cohen’s d = 0.42; Fig. 1A).

APOE "2/"3 participants displayed lower rates of amyloid

accumulation compared to "3/"3 (P = 0.01; Cohen’s

d = 0.41), "3/"4 (P = 1.42 � 10�5; Cohen’s d = 0.75), and

"4/"4 (P = 1.57 � 10�4; Cohen’s d = 0.84) participants

(Fig. 1B).

GWAS of longitudinal change in
amyloid PET burden

To identify additional genetic modulators of longitudinal

change in amyloid burden, we performed a GWAS testing

6 112 217 SNPs, with baseline age and gender included as

covariates (Fig. 2). No evidence of systematic inflation of

P-values was observed (� = 1.016; Supplementary Fig. 3).

A genome-wide significant association was identified on

chromosome 3 for rs12053868, an intronic SNP in

IL1RAP (P = 1.38 � 10�9; Fig. 3A). The rs12053868-G

allele was associated with higher rates of amyloid accumu-

lation compared to the major (A) allele (Fig. 3B). A large

effect size was observed in homozygous GG participants

(Cohen’s d = 1.20) equivalent to an odds ratio of 8.79

(Borenstein, 2009). Using stepwise linear regression with

forward selection, this SNP explained 7.1% of the pheno-

typic variance in addition to, and independent from, the

3.4% explained by APOE "4 status (Supplementary Fig.

4). This association remained genome-wide significant

(P = 5.80 � 10�9) after the inclusion of APOE "4 status,

baseline diagnosis, years of education, baseline cortical
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amyloid PET burden (modelled as described in the

‘Materials and methods’ section), and the first three princi-

pal components from population structure analysis. No sig-

nificant interactions were identified between rs12053868

and any of these factors, or age or gender. The effect of

the G allele on higher rates of amyloid accumulation was

present in both amyloid-negative and amyloid-positive par-

ticipants as classified by the baseline PET scan

(Supplementary Fig. 5). Using voxel-wise analysis to further

characterize the spatial effect of this SNP in the brain, we

again observed an association of rs12053868-G with

higher rates of amyloid accumulation, with significant clus-

ters for this effect observed primarily in the bilateral fron-

tal, medial, and lateral parietal, and lateral temporal lobes,

as well as throughout the posterior and anterior cingulate

cortex (Fig. 3C).

Suggestive associations with longitudinal change in amyl-

oid burden (P5 5 � 10�6) were also identified (Fig. 2 and

Table 2). These included additional SNPs in IL1RAP, as

well as SNPs on other chromosomes within or near

KCNG1 (potassium voltage-gated channel, subfamily G,

member 1), UBR3 (ubiquitin protein ligase E3, component

n-recognin 3, putative), and JAM2 (junctional adhesion

molecule 2). Variants in BIN1 (bridging integrator 1) and

CASS4 (cas scaffolding protein family member 4) which

were identified in recent Alzheimer’s disease case-control

GWAS (Hollingworth et al., 2011; Naj et al., 2011;

Lambert et al., 2013) displayed uncorrected P5 0.05 in

our analysis (Supplementary Table 1). Collectively, all

SNPs tested in the GWAS (including the IL1RAP and

APOE SNPs described previously) were estimated to ex-

plain 34% of the phenotypic variance based on a genome

partitioning analysis (Yang et al., 2011).

Gene- and pathway-based GWAS
extensions

Using gene-based GWAS analysis, IL1RAP displayed

genome-wide significant association with longitudinal

change in amyloid burden [P5 2.17 � 10�6 (0.05/23 000

genes)]. Additional genes not initially uncovered through

single SNP analysis displayed strong gene-level associations

(Table 3). We also identified 83 biological pathways dis-

playing enrichment of GWAS association, including numer-

ous pathways related to cell adhesion and the complement

system (Supplementary Table 2).

Figure 1 Effect of the APOE locus on 2-year change in cortical amyloid PET burden. Mean annualized per cent change in global

cortical 18F-florbetapir SUVR (adjusted for age and gender) � standard errors are displayed based on (A) APOE "4 status and (B) APOE "2/"3/"4

status. (A) APOE "4 carriers exhibited larger increases in brain amyloid PET burden compared to non-carriers (P = 9.00 � 10�6). (B) APOE "2/"3

participants displayed lower rates of amyloid accumulation compared to "3/"3 (P = 0.01), "3/"4 (P = 1.42 � 10�5), and "4/"4 (P = 1.57 � 10�4)

participants.

Table 1 Selected sample characteristics

ADNI IMASa MAPb ROSb

Participants, n 495 25 178 190

Gender

Male 274 (55%) 8 (32%) 54 (30%) 68 (36%)

Female 221 (45%) 17 (68%) 124 (70%) 122 (64%)

Age at baseline

(years)

73.0 (7.8) 70.6 (7.3) 80.8 (6.2) 76.0 (6.8)

Education

(years)

16.4 (2.7) 16.2 (2.6) 15.0 (3.0) 18.3 (3.2)

Values are n (percentage) or mean (SD).
a11C-PBR28 PET subsample.
bMemory analysis subsample.
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Deep sequence analysis of IL1RAP

To further investigate the IL1RAP locus, we analysed gene

sequence data for a subset of the GWAS sample (n = 435).

Following stringent quality control, 1311 base pairs with at

least one alternative allele present in the sample were avail-

able for analysis. Testing of 406 common variants con-

firmed a peak association with higher rates of amyloid

accumulation for rs12053868 (P = 8.18 � 10�9; Cohen’s

d = 1.18 for GG versus AA). Although six additional

common variants displayed strong association

(P55 � 10�4), pairwise linkage disequilibrium calcula-

tions (Supplementary Table 3) and conditional analyses

suggested that these SNPs, while not complete proxies for

rs12053868, were not independent from rs12053868.

Using SKAT (Ionita-Laza et al., 2013), we identified a col-

lective association of low-frequency and rare variants with

rate of change in amyloid burden (P = 7.74 � 10�3).

IL1RAP rs12053868 is associated with
a marker of cortical microglial
activation

IL1RAP encodes a necessary component of the IL-1 (inter-

leukin-1) receptor complex and its downstream signalling

pathway (Gabay et al., 2010). IL-1 is a potent pro-inflam-

matory cytokine known to promote activation of microglia,

the resident phagocytes in the brain (Ghosh et al., 2013;

Doens and Fernandez, 2014). Recent reports have suggested

that microglia may be crucial in clearing brain amyloid and

limiting plaque growth (Chakrabarty et al., 2015; Condello

et al., 2015; Johansson et al., 2015). We hypothesized that

the IL1RAP SNP associated with higher rates of amyloid

accumulation would also be associated with lower microglial

activation. We tested this in vivo in IMAS using PET and
11C-PBR28, a radioligand considered to be a marker of

microglial activity (Brown et al., 2007). Controlling for

age, gender, and TSPO rs6971 genotype, IL1RAP

rs12053868-G was associated with lower cortical 11C-

PBR28 signal, indicative of lower cortical microglial activa-

tion (P = 0.031; Cohen’s d = 1.33; Supplementary Fig. 6).

IL1RAP rs12053868-G carriers exhibit
greater temporal cortex atrophy over
2 years

Amyloid deposition has been associated with increased

rates of brain atrophy in cognitively normal older adults

and in Alzheimer’s disease (Storandt et al., 2009; Chetelat

et al., 2010; Dore et al., 2013). We hypothesized that

Figure 2 Manhattan plot for the GWAS of longitudinal change in cortical amyloid PET burden. Observed �log10 P-values (y-axis)

are displayed for all tested SNPs on each autosomal chromosome (x-axis). A genome-wide significant association (P5 5 � 10�8; red line) with

longitudinal change in global cortical amyloid burden measured by 18F-florbetapir PET was identified on chromosome 3 within IL1RAP. Suggestive

associations (P5 5 � 10�6; blue line) were identified on additional chromosomes.
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IL1RAP rs12053868-G would be associated with higher

rates of atrophy in Alzheimer’s disease-specific regions

(the bilateral temporal cortex) (Dore et al., 2013). Using

structural MRI in a subset of the GWAS sample

(n = 358), rs12053868-G carriers exhibited greater declines

in temporal cortex thickness compared to non-carriers

(P = 0.035; Cohen’s d = 0.28; Supplementary Fig. 7A).

This effect was observed across all diagnostic groups

(Supplementary Fig. 7B) and remained significant

(P = 0.042) after the inclusion of diagnosis (P5 0.001) as

an independent predictor variable.

IL1RAP rs12053868-G carriers exhibit
greater likelihood of progression
from MCI to Alzheimer’s disease

Amyloid deposition in MCI is a predictor of clinical

progression to Alzheimer’s disease (Huijbers et al., 2015).

Figure 3 Association and effect of IL1RAP rs12053868-G on longitudinal change in cortical amyloid PET burden. (A) All SNPs

within 250 kb of rs12053868 are plotted based on their GWAS �log10 P-values, NCBI build 37 genomic position, and recombination rates

calculated from the 1000 Genomes Project reference data. The colour scale of r2 values is used to label SNPs based on their degree of linkage

disequilibrium with rs12053868. Genes in the region are labelled with arrows denoting 5’-to-3’ orientation. (B) Mean annualized per cent change

in global cortical 18F-florbetapir SUVR (adjusted for age and gender) � standard errors are displayed based on rs12053868 genotype. The minor

allele (G) of rs12053868 was associated with a 0.8% increase per allele copy per year in cortical amyloid PET burden. The association of

rs12053868 was genome-wide significant under additive (P = 1.38 � 10�9) and dominant (P = 5.26 � 10�9) genetic models. (C) Selected cross-

sectional slices (top) and surface renderings (bottom) from voxel-wise analysis of the effect of rs12053868 on longitudinal amyloid accumulation

measured by 18F-florbetapir PET. The colour scale indicates regions where the rs12053868-G allele was associated with higher rates of amyloid

accumulation (GG4GA4AA). All comparisons are displayed at a voxel-wise threshold of P5 0.001 (uncorrected) with minimum cluster size

(k) = 175 voxels (approximately corresponding to a cluster-wise threshold of FDR-corrected P5 0.05). Where applicable, the left and right

cerebral hemispheres are labelled for orientation. As displayed, the most significant clusters (identifying regions where rs12053868-G exhibited

the greatest effect on rates of amyloid accumulation) were observed in the bilateral frontal lobes, medial parietal lobes, lateral parietal lobes,

lateral temporal lobes, and the anterior and posterior cingulate cortex.
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We hypothesized that rs12053868-G would be associated

with a greater likelihood of progression from MCI to

Alzheimer’s disease. Within the GWAS sample, 269/294

participants diagnosed with MCI at baseline had diagnosis

information at 2-year follow-up, including 42 who pro-

gressed to clinical Alzheimer’s disease and 227 who did

not. Using logistic regression with age and gender included

as covariates, rs12053868-G carriers were more likely to

convert to Alzheimer’s disease within the follow-up period

than non-carriers [P = 0.025, odds ratio (OR) = 2.32 (1.11–

4.87)] (Supplementary Fig. 8).

IL1RAP rs12053868 is associated with
accelerated cognitive decline in high
risk individuals

Memory impairment is the cardinal early symptom of

Alzheimer’s disease (Ballard et al., 2011) and amyloid de-

position is known to be related to memory impairment and

longitudinal cognitive decline (Sperling et al., 2013;

Villemagne et al., 2013). We hypothesized that

rs12053868-G would be associated with accelerated decline

of memory in participants at high risk for amyloid

pathology (defined as being APOE "4 positive or having

a baseline diagnosis of clinical Alzheimer’s disease). In a

meta-analysis of 579 participants from three independent

cohorts (ADNI, MAP and ROS), rs12053868-G was asso-

ciated with faster 2-year decline in verbal episodic memory

performance (P = 7.72 � 10�4), with each copy of the G

allele adding approximately one-quarter of a standard de-

viation to the rate of decline (Supplementary Fig. 9). The

heterogeneity statistic (I2 = 0, P = 0.37) indicated no signifi-

cant heterogeneity across the individual cohort studies used

for meta-analysis (Higgins et al., 2003).

Discussion
To our knowledge, this is the first reported GWAS of lon-

gitudinal change in brain amyloid load measured by 18F-

florbetapir PET. Our findings support IL1RAP as a novel

potential Alzheimer’s disease target and highlight the use of

amyloid PET as a valuable Alzheimer’s disease endopheno-

type, particularly in a longitudinal framework.

IL1RAP encodes a necessary and potentially rate-limiting

component of the pro-inflammatory IL-1 signalling path-

way (Gabay et al., 2010). Activation of this pathway re-

quires binding of IL1RAP to the IL-1/IL-1 receptor

complex (Wang et al., 2010a). IL1RAP splice variants,

including one isoform expressed only in the CNS as well

as a different soluble variant, exert inhibitory effects on the

IL-1 pathway (Smith et al., 2009). More broadly, the IL-1

pathway and its component genes have long been foci of

interest in genetic and other studies of the Alzheimer’s dis-

ease spectrum (Green et al., 2002; Wang et al., 2005; Tsai

et al., 2010; Latz et al., 2013). These studies, and recent

findings from Alzheimer’s disease mouse models revealing

that IL-1 overexpression leads to increased plaque-asso-

ciated activated microglia, decreased amyloid burden, and

Table 2 Peak associations (P5 5 � 10�6) for the GWAS of longitudinal change in amyloid PET burden

Chromosome SNP Gene symbol Gene name MAFa b (SE)b R2c P Gen/

Impd

3 rs12053868 IL1RAP Interleukin-1 receptor accessory protein 0.12 0.84 (0.14) 0.071 1.38 � 10�9 437/58

3 rs3773970 IL1RAP Interleukin-1 receptor accessory protein 0.13 0.67 (0.13) 0.049 6.19 � 10�7 494/1

3 rs3773973 IL1RAP Interleukin-1 receptor accessory protein 0.13 0.67 (0.13) 0.049 6.19 � 10�7 436/59

3 rs147346019 IL1RAP Interleukin-1 receptor accessory protein 0.13 0.67 (0.13) 0.049 6.19 � 10�7 0/495

20 rs10470013 Near KCNG1 Potassium voltage-gated channel,

subfamily G, member 1

0.11 0.73 (0.14) 0.049 6.65 � 10�7 438/57

14 rs79110742 Intergenic 0.06 0.94 (0.19) 0.048 7.74 � 10�7 0/495

2 rs13012722 UBR3 Ubiquitin protein ligase E3 component

n-recognin 3 (putative)

0.49 �0.45 (0.09) 0.045 1.67 � 10�7 0/495

21 rs8129913 JAM2 Junctional adhesion molecule 2 0.43 0.43 (0.09) 0.043 2.75 � 10�6 0/495

21 rs11087971 JAM2 Junctional adhesion molecule 2 0.43 0.43 (0.09) 0.043 2.75 � 10�6 0/495

5 rs11744848 Intergenic 0.13 �0.63 (0.13) 0.043 2.80 � 10�6 0/495

1 rs10737896 Intergenic 0.21 �0.51 (0.11) 0.043 3.19 � 10�6 0/495

1 rs7534801 Intergenic 0.21 �0.51 (0.11) 0.043 3.19 � 10�6 495/0

20 rs6096218 Near KCNG1 Potassium voltage-gated channel,

subfamily G, member 1

0.11 0.69 (0.15) 0.043 3.20 � 10�6 494/1

21 rs4817054 JAM2 Junctional adhesion molecule 2 0.43 0.43 (0.09) 0.043 3.34 � 10�6 0/495

14 rs8023225 Intergenic 0.08 0.77 (0.17) 0.042 4.41 � 10�6 494/1

aMinor allele frequency in the GWAS sample.
bb (unstandardized) effect size from the GWAS (with standard error indicated in parentheses), denoting the annualized percent change in global cortical 18F-florbetapir SUVR

conferred by one copy of the minor allele.
cProportion of phenotypic variance explained (not necessarily uniquely) by the SNP, including age and gender as covariates.
dGen = number of participants for which the SNP was genotyped on a GWAS array (ADNI participants were genotyped on one of three Illumina GWAS arrays which each had

different genomic coverages); Imp = number of participants for which the SNP was imputed.
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increased tau phosphorylation (Prinz et al., 2011; Ghosh

et al., 2013) highlight the potentially crucial roles of the

IL-1/IL1RAP pathway in modulating Alzheimer’s disease

pathology.

Microglial activation pathways are leading candidates for

promoting amyloid clearance and limiting plaque develop-

ment. Variants in TREM2 (triggering receptor expressed on

myeloid cells 2) thought to impair microglial phagocytic

function have been associated with increased Alzheimer’s

disease risk (Guerreiro et al., 2013; Jonsson et al., 2013)

and large-scale pathway and network analyses have also

implicated activated microglia in Alzheimer’s disease patho-

genesis (Jones et al., 2010; Zhang et al., 2013). Along with

recent studies relating loss of microglial function to worsen-

ing amyloid pathology (Bradshaw et al., 2013;

Chakrabarty et al., 2015; Condello et al., 2015;

Johansson et al., 2015), the discovery that IL1RAP is asso-

ciated with higher rates of amyloid accumulation and lower

signal of a PET marker for microglial activation provides

strong reinforcement for this hypothesis.

IL1RAP is a known therapeutic target for leukaemia

(Barreyro et al., 2012; Askmyr et al., 2013) and chronic

inflammatory diseases such as rheumatoid arthritis (Gabay

et al., 2010; Dinarello, 2011). Pathway analysis of a large

Alzheimer’s disease case-control GWAS (Harold et al.,

2009) (n = 11 789) identified association of immune-related

pathways with a significant contribution from IL1RAP,

including a top Alzheimer’s disease risk SNP (rs4571225;

P = 1.26 � 10�5) which is not a proxy for, but is in mod-

erate linkage disequilibrium with rs12053868 (r2 = 0.003;

D’ = 0.63) (Jones et al., 2010). An intergenic SNP

(rs9877502) 290 kb downstream of IL1RAP also displayed

genome-wide significant association with cross-sectional

CSF tau levels (Cruchaga et al., 2013), but this SNP is

not in linkage disequilibrium with rs12053868

(r2 = 0.003; D’ = 0.10). Prior to our study, IL1RAP

rs12053868 had not been previously reported in an

Alzheimer’s disease genetic association study. Our new as-

sociation for this SNP may reflect a relative specificity for

amyloid accumulation versus the more heterogeneous case-

control status (Kendler and Neale, 2010), increased power

obtained via endophenotype analysis (Potkin et al., 2009),

or previous suggestive association below reporting

thresholds.

IL1RAP is highly expressed in the brain but seems to be

downregulated in prefrontal cortex with increasing age

(Kang et al., 2011; Primiani et al., 2014). Although it is

not a coding SNP, rs12053868 may be associated with

decreased IL1RAP expression in the cortex and hippocam-

pus based on preliminary data (Supplementary Fig. 10).

There is substantial precedent for non-coding SNPs to

have functional effects (Kapranov et al., 2007;

Consortium, 2012; De Jager et al., 2014), and intronic

IL1RAP SNPs have previously been associated with

plasma levels of soluble IL1RAP, including a top SNP

(rs724608; P = 8.81 � 10�13) which is in moderate linkage

disequilibrium with rs12053868 (r2 = 0.005; D’ = 0.45)

(Lourdusamy et al., 2012). However, functional genomics

studies in brain tissue will be needed to further characterize

the IL1RAP locus and its potential impact on Alzheimer’s

disease pathogenesis.

Following the GWAS discovery, we related IL1RAP

rs12053868-G to other longitudinal Alzheimer’s disease

endophenotypes. In particular, the observed effect of

rs12053868 on clinical progression in MCI argues for fur-

ther study of the impact of IL1RAP on clinical trajectories

in pre-MCI states. This result also suggests that in combin-

ation with APOE, other known Alzheimer’s disease risk

genes, and family history, IL1RAP might be useful for

risk enrichment in clinical trial design and risk stratification

in study analysis or as part of personalized genetic suscep-

tibility tests for Alzheimer’s disease onset or progression.

Using gene sequence data from a subset of the GWAS

sample, we identified a pooled association of low-frequency

Table 3 Peak GATES gene-based associations with longitudinal change in amyloid PET burden

Chromosome Gene symbol Gene name GATES P

3 IL1RAP Interleukin-1 receptor accessory protein 9.45 � 10�8

20 PSMA7 Proteasome subunit, alpha type, 7 1.33 � 10�4

20 LSM14B SCD6 homolog B (S. cerevisiae) 1.46 � 10�4

21 JAM2 Junctional adhesion molecule 2 1.59 � 10�4

19 APOC1 Apolipoprotein C1 1.74 � 10�4

2 UBR3 Ubiquitin protein ligase E3 component n-recognin 3 (putative) 1.75 � 10�4

19 APOE Apolipoprotein E 2.26 � 10�4

10 PNLIPRP1 Pancreatic lipase-related protein 1 2.33 � 10�4

19 TOMM40 Translocase of outer mitochondrial membrane 40 homolog (yeast) 3.10 � 10�4

3 MIR6828 MicroRNA 6828 3.12 � 10�4

14 SNAPC1 Small nuclear RNA activating complex, polypeptide 1 3.47 � 10�4

12 BRI3BP Brain protein I3 binding protein 3.82 � 10�4

20 SS18L1 Synovial sarcoma translocation gene on chromosome 18-like 1 4.09 � 10�4

3 CLDN11 Claudin 11 4.98 � 10�4
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and rare IL1RAP variants with the rate of amyloid accu-

mulation. Although larger samples will facilitate assessment

of the effects of individual rare variants, this finding bol-

sters the initial GWAS discovery of IL1RAP, as genes truly

related to disease pathogenesis are likely to contain asso-

ciated common and rare variants (Zuk et al., 2014).

Suggestive associations were identified through GWAS

and may have reached genome-wide significance with a

larger sample. These included SNPs in JAM2, adjacent to

APP on chromosome 21. Mutations in APP are among the

causes of early-onset Alzheimer’s disease (Bettens et al.,

2013) and a rare variant in APP was found to be protective

against late-onset Alzheimer’s disease (Jonsson et al., 2012).

SNPs near APP were also associated with amyloid plaque

burden in a neuropathological study of post-mortem brain

tissue (Shulman et al., 2013). Notably, the top SNP from

that study (rs2829887) is in strong linkage disequilibrium

with the top JAM2 SNP (rs8129913) from our analysis of

longitudinal amyloid PET (r2 = 0.57; D’ = 0.91). In add-

ition, JAM2 (P = 1.59 � 10�4) and APP (P = 0.048) each

displayed uncorrected gene-level P5 0.05 in our study.

These suggestive findings argue for further investigation

of the JAM2-APP locus to clarify the potential functional

gene(s) and causal variant(s) related to amyloid pathology.

Complementary gene- and pathway-based analyses were

used to test for collective effects of multiple variants within

shared functional units (Ramanan et al., 2012b). Gene-

based analysis uniquely identified additional candidates

for further study, and enrichment of GWAS association

was identified in pathways related to the complement

system, cell adhesion, and Notch transcription, as well as

the IL-1 pathway overall. Activation of cell adhesion and

complement receptors are crucial for microglia to recog-

nize, aggregate around, and ultimately clear amyloid de-

posits (Ramanan and Saykin, 2013; Doens and

Fernandez, 2014). Notch has key roles in regulating neur-

onal plasticity but these activities depend on its initial

cleavage by �-secretase, the enzyme also responsible for

generating amyloid-b (Mattson, 2003).

All SNPs tested in the GWAS were estimated to collect-

ively explain 34% of the variance in 2-year change in brain

amyloid PET burden, a considerable proportion given the

modest sample used for GWAS. Although amyloid depos-

ition and clearance are dynamic processes with unknown

heritability, our findings indicate that the rate of amyloid

accumulation has a substantial genetic component and sug-

gest that additional genetic variants, as well as gene–gene

and gene–environment interactions, may be discovered in

future using larger samples and complementary analytical

approaches.

This work has several limitations. Although we leveraged

publicly available ADNI genetics and longitudinal amyloid

PET data to perform this original study, our sample size

had limited power for a GWAS (Supplementary Fig. 11).

The future availability of comparable data from larger sam-

ples will allow for suitable replication testing and add-

itional discovery. Functional genomics experiments not

performed here, including microglial immunohistochemistry

and analyses of IL1RAP knockout and antibody- and

siRNA-based knockdown models, will also be needed to

characterize our novel finding. In particular, studies of

brain tissue, rather than blood genomic DNA, will be

better able to assess for epigenetic and transcriptomic

events that may elucidate the mechanistic relationship be-

tween IL1RAP and amyloid accumulation. Further, while it

could not be appropriately addressed with presently avail-

able data, analyses of serial CSF samples would help assess

whether IL1RAP impacts soluble and oligomeric forms of

amyloid. Finally, candidate PET radiotracers selective for

tau aggregation in the brain are also now in clinical trials

(Villemagne et al., 2015), and if validated, would aid in-

vestigation of the potential relationship between the IL-1/

IL1RAP pathway and tau pathology.

In conclusion, we discovered a new association of

IL1RAP rs12053868 with higher rates of amyloid accumu-

lation on longitudinal 18F-florbetapir PET and we related

this SNP to other Alzheimer’s disease endophenotypes,

including clinical progression, cognitive decline, temporal

cortex atrophy on MRI, and lower signal of a PET

marker of microglial activation. The biological roles of

IL1RAP in amyloid deposition and clearance, particularly

in relation to microglial function, merit further investiga-

tion and may have significant implications for risk stratifi-

cation and therapeutic development in Alzheimer’s disease.
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